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Analytic chirality functions in one or more ligand parameters representing 
pseudoscalar molecular properties are shown to decompose as linear com- 
binations in the elementary chirality functions of a suitable module basis. The 
implications of this decomposition for an approximation ansatz are considered. 
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1. Introduction 

When one seeks to employ chirality functions F (comp. [1, 2]) in one or more 
ligand parameters in investigations ofpseudoscalar molecular properties, two types 
of  problems occur. 

1) By working out a classical or quantum-mechanical theory of  the chiral property 
under consideration, the analytic form of  the desired chirality function is obtained 
-usual ly  a power series in one or more independent parameters 2, # . . . . .  By a 
suitable definition of the molecular frame and attached ligands the parameters 
2, # . . . .  may be taken as ligand parameters if one restricts the investigation to 
molecules of an identical molecular frame. One may then choose a suitable centre 
2o  p 0 , . . ,  of  the expansion such that an abitrary order of  the expansion represents, 
by itself, a chirality function with respect to the group of symmetry transformations 
of the molecular frame. When the symmetry of each contribution in the expansion 
is taken into consideration, the actual computation of the function F is greatly 
eased (comp. I-3, 4]). 

2) If a suitable amount of  measurements of  a chiral property have been performed 
without an available theoretical description of  that property [5-7], one may tenta- 
tively make the hypothesis that only one "semi-empirical" ligand parameter 2 
needs to be considered -whi le  having no accurate idea of the physical meaning of  2. 
Then one may try to find an approximation of the chirality function F by basing 
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the analysis on a polynomial of suitable symmetry in 2. But from the lack of know- 
ledge as to the physical quality of 2 one is not able to choose with certainty a centre 
of reference (centre of expansion in 2) such that the 2-polynomial is a good 
approximation and carries the highest possible symmetry. That is, one cannot be 
sure from the outset that the required 2-polynomial will turn out to be a chirality 
function with respect to the group of symmetry transformations of the molecular 
frame. 

2. Chirality Functions in a Single Parameter 

Let there be given a class of molecules with the class defining property of a common 
achiral molecular frame with n sites for ligands. The group G of the symmetry 
transformations of the frame consists of the rotations and reflections which leave 
the frame invariant. Further, let there be given a set of "structureless" ligands 
characterized by a single parameter 2 such that an arbitrary point 2 = (21 , . . . ,  2,) 
of an n-dimensional parameter space defines a molecule of the class by a suitable 
numbering of the n sites of the molecular frame. Thus, the symmetry operations of 
the frame applied to an actual molecule can be represented by some permutations 
of the ligands, i.e. by some permutations of the n coordinates 21 , . . . ,  2, repre- 
senting the ligands. The permutations form a group S which is a homomorphic 
image of G (comp. [1]). 

Now, if Fis a pseudoscalar property of the molecules of the class, a measurement of 
F furnishes an identical result for molecules which differ only in a rotation of the 
frame, whereas a measurement of enantiomers (molecules which differ in a reflec- 
tion of the frame) furnishes a result which is identical in absolute value but differs 
as to the sign. 

Let F(M =F(21 . . . . .  2,) be an analytic function on the n-dimensional parameter 
space such that F represents the pseudoscalar property F: 

F > F(J,)=F(21, . . . ,  2,) (1) 

Then F is a chirality function. The symmetry operations of the molecular frame 
applied to an actual molecule then become permutations of the arguments of F. 
Particularly, permutations which represent a rotation of the frame leave F invari- 
ant whereas F changes sign under permutations which represent a reflection of the 
molecular frame. 

Because of its analyticity, one can expand F about a point ~o = (2o . . . . .  2 ~ of the 
parameter space in an n-fold Taylor series. One gets in the usual notation: 

/70 "~ ;C)=F(/~~ + l~Oq q~ (s grad)qF(s I~=a~ 

= F(2~ + 1~ ~. (2, grado)qF(2 ~ 
q 

(2) 
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with 

~ + . - . + 2 ,  (3) (4, grad)q= 21 821 ~n 

77~ (4) (4, grado) q -  2 1 ~ + . . . + 2 . 0 2  n 

The equation 

F(4) = F(21 . . . .  ,2n) = 0 (5) 

defines the hypersurface of  the zeros of F in  the n-dimensional parameter space. On 
this hypersurface one finds zeros of  F which represent achiral molecules and one 
may find zeros which represent chiral molecules. Achiral zeros of  a chirality func- 
t i on -  in contrast to chiral ze ros -a re  a necessary consequence of the symmetry of  
the molecule as, for achiral molecules, a reflection of  the frame represents a sym- 
metry operation. Thus, all chirality functions of the class of  molecules have in 
common the set of  achiral zeros (taken as points in the parameter space). If 4 ~ is an 
achiral zero, then for any analytic chirality function F: 

F(4~ 4)=  1~  ~.v (s grado) q F(4~ (6) 
q 

For any order q of'the Taylor expansion (6) the operator 

(4, grad) q (7) 

is totally symmetric with respect to permutations of  the 21 . . . .  ,2,,. Thus, the 
expression 

(4, grad)qF(4) (8) 

represents a chirality function with respect to the molecular class under considera- 
ation. 

The symmetry of  the particular molecule defined by the point 4~  (20 . . . .  , 2  ~ 
defines a certain subgroup G o (G o c G) of the group G of symmetry operations of  
the frame and, in consequence, a certain subgroup S o (Soc  S) of the group S of 
permutations which represent the symmetry operations of the frame. Thus, the 
function : 

F(4~ 4)=  F(2~ 21 . . . . .  2~  2,) (9) 

is totally symmetric under the permutations of S O applied to 20 . . . .  , ,t ~ In con- 
sequence, F(4~ 4) is a chirality function o f S  o with respect to 21, . . . ,  2,, that is, if 
the permutations of So are applied to the increments 21 . . . . .  2,. Thus, for any 
order q of  the series expansion (6) the expression 

(4, grado)qF(4 ~ (10) 

represents a rational integral chirality function in the increments 21 . . . .  , 2 ,  with 
respect to the permutation group S O . The particular case when the actual molecule 
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given by 2~176 . . . .  2 ~ ) possesses the highest possible symmetry, namely the 
symmetry of the molecule frame, deserves special interest, as under these circum- 
stances one obtains S O = S and, in consequence, for any order q of the series 
expansion (6) the expression (10) represents by itself a rational integral chirality 
function with respect to the group S of permutations applied to the increments 
21 , . . . ,  2,. 

E x a m p l e :  Symmetry group Car. 

/k The function 

F ( 2 )  = (21 - -  22)(22 - -  23)(23 - -  21) (11)  

is a chirality function for this molecular class. A Taylor 
series expansion about the achiral point 

20 o o 

Fig. 1. leads to : 

F(2O+ 2)=(22 o o 2 -21) (21-23)  
+ (22 - 21)(223 - , h  - 22)( 20 - 2~ 

+ (22 - 21)(23 - 22)(23  - 2 l )  (12) 

Each order of the series expansion (12) represents a chirality function with respect 
to the symmetry group Cs of the molecules defined by 20 =20 5 2  ~ Only the 
achiral molecules given by ~o_ ~ o  ~o possess the full symmetry of the frame and 
in this case one simply gets in the above example: 

F(20-~- 2) h=- (22 - -  21)(23 - - 2 2 ) ( 2 3  - - 2 1 )  (13) 

Chirality functions of polynomial form can be considered as relative invariants 
with the factor system { + 1, - 1 }, with respect to the group S (or So) of permuta- 
tions of the n independent parameters 21 , . . . ,  2n (comp. 1,8]). Particularly, the 
factor (+  1) obtains for a permutation which represents a rotation, whereas the 
factor ( -  1) obtains for a permutation which represents a reflection. Totally sym- 
metric polynomials are called "absolute invariants", with a factor system consisting 
of (+ 1) only. The relative invariants (of a given factor system) form a so-called 
"R-module" 1-12] with respect to the ring of absolute invariants. By a theorem 
taken from the theory of invariants [8], the R-module of the relative invariants of 
any given factor system is "finitely generated" 1-12], i.e., there exists a finite module 
basis such that any relative invariant of the factor system may be represented by a 
linear combination in the elements of the basis with coefficients which are elements 
of the set of absolute invariants. Let {X1, �9 -., Zm} be the module basis of the rational 
integral chirality functions (with respect to S or So), then for any arbitrary rational 
integral chirality functionf=f(2),  one obtains: 

f =  taz  1 + � 9  + tmZ m (14) 

where t 1 , . . . ,  t m represent rational integral functions in the parameters 21 . . . . .  2,, 
which are totally symmetric with respect to the permutations of S (or So). For a 
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chirality function F ( t ) = F ( 2 1  . . . . .  2,) which is analytic in the independent 
parameters 21 . . . .  , 2 , ,  one therefore obtains: 

V(~)= Ttgl + - - .  + Tmxm (15) 

where T t . . . . .  T m represent analytic functions in the parameters 2 ~ , . . . ,  2,, which 
are totally symmetric with respect to the permutations of  S (or So). 

By a treatment which is generally applicable (comp. [8], p. I 11), one can construct 
a finite module basis for the rational integral chirality functions of  a permutation 
group S (or So). In general, though, a basis is obtained which is strongly redundant. 
In the individual case it thus seems more advisable to construct a module basis by 
starting from the chirality polynomials of  lowest degree [ 1,2] in 2 and then to show 
completeness by complete induction. 

As has been mentioned earlier, among the points of the hypersurface in the parame- 
ter space given by the relation 

F ( t )  = F ( 2 1 , . . .  , 2,) = 0 (16) 

one finds achiral and, in general, chiral molecules. That  is, the set of zeros of F con- 
tains a subset of those zeros wh ich -  representing achiral molecules-  are completely 
determined by symmetry such that the set of common zeros of  any system of 
chirality functions defined on the parameter  space must necessarily contain the set 
of achiral zeros. 

For  a module basis {)~1,-.., Z,, } the set of the common zeros of  the basis elements 
is called the "algebraic set" ("Nullstellengebilde") of the basis. The algebraic set is 
obtained by the intersection of  the m-hypersurfaces 

Z I = 0 , . . . ,  Zm=0 (17) 

in parameter space. Obviously, the algebraic set of ~1 . . . .  , Zm contains the minimal 
algebraic set which is just the set of  the achiral zeros. 

Let {Z1,. �9 Zr } be a selection of  elements from a module basis where the algebraic 
set of  the Z ~,. �9 �9 Zr is the set of the achiral zeros of the molecular class. Then, any 
chirality function Z vanishes in any of  the points of the algebraic set of the {Z1 . . . .  , 
L}. By Hilbert 's Nullstellensatz [9] there exists a positive integerp so that for any 
rational integral chirality function Z one obtains: 

)~P=hlzI-I-""" +hrz~ (18) 

where h 1 . . . .  , h r are some polynomials. 

If P is the projection operator on the chiral representation, Q the projection 
operator on the symmetric representation of  the permutation group S (resp. So), 
then one obtains: 

Ph~z~ = gi Qhi = Iuzi (19) 

where I i = Qh~, i = 1 . . . . .  r, was introduced. 
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Putting 

0 i fp  is even 
= (20) 

I ~  - Z  p-1 i fp  is odd 

one gets : 

IoZ+ I 1 Z , + . . .  + I rzr  = 0 (21) 

In the case of  {Z1 . . . . .  Zr} already representing a complete module basis, one may 
take p--- 1 and I o = - 1. Otherwise, the basis may permit so-called "syzygies", i.e. 
there may be rational integral absolute invariants T o, T 1 . . . . .  Tr, so that one ob- 
tains for the module basis {g0, Z1 . . . .  Z,, �9 �9 �9 } : 

ToZo + T~Z~+ . . .  + TrZ r = 0  (22) 

The relation (22) is valid identically in the parameters 2 1 , . . . ,  Z,. If syzygies exist, 
the decomposition of  an arbitrary rational integral chirality function Z into a linear 
combination of  basis elements is not unique. 

From now on it is assumed that the algebraic set of the module basis {Z1, �9 �9 Zm} 
of  the rational integral chirality functions is equal to the set of  achiral zeros of the 
molecular class. Then, for any chiral molecule as a point g in the parameter space, 
there exists a chirality function for which g represents a chiral zero and there exist 
other chirality functions for which g does not represent a chiral zero. For  any 
analytic chirality function F decomposed according to (15) 

F =  T~Z~ + " + TmZm (23) 

the achiral zeros of  F are fixed by the algebraic set of  the elements Zl,- �9 Zm of  the 
module basis, whereas the chiral zeros o f f  are determined by the analytic functions 
T 1 , . . . ,  T m which are totally symmetric with respect to the permutations of S (or 
So). There are, in other words, no chiral zeros of Fpredetermined by the algebraic 
set of  the elements of  the module basis. Two cases may now be considered: 

a) The module basis of  the chirality functions consists of  a single element Z1 only. 
b) The module basis of  the chirality functions consists of at least two elements 

Z1, Z2. 

According to the assumption made above, the function Zl in case (a) can only have 
achiral zeros. A nontrivial chirality function Z changes sign on the (real) parameter 
space. Thus, in the n-dimensional real space the algebraic set is the hypersurface 
given by Z1 = 0, which divides the parameter space into open regions containing the 
chiral points, with boundaries consisting of  the achiral points (comp. the classifi- 
cation of  molecules according to the concept of homochirality El0, 11]). Case (a) is 
characteristic of molecular classes of  category a in [10]. 

In case (b) the set of  achiral zeros is the algebraic set of  at least two polynomials, i.e. 
the intersection of  at least two hypersurfaces in the (real) parameter space. Thus, 
the set of  achiral zeros - being of  a dimension of  less than (n ~- 1) - does not divide 
the parameter space into open regions. In contrast to case (a), any continuous 
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chirality function necessarily possesses chiral zeros the position of which cannot be 
determined by symmetry arguments. Case (b) is characteristic of molecular classes 
of  category b in [10]. 

Example." Symmetry group C2v , molecular class of  cat. (b). 

Module basis Oh, Z2) with 

){1 = 2 1 - 2 2 +  23 -24. (24) 

){2 =2123 "z- ~224 (25) 

Fig. 2. 

For the achiral points 2 a ~"~-/~2 5;~23 =24- one has: 

lim ( l i m ) { 2 ~ = 2 1  (26) 
;t3~;~4\al 42 ZI/ 

lira ( lira ~ ] = 2 3  (27) 

Thus, the totally symmetric function )~z/){1 is discontinuous at the achiral points 
2t =22 # 23 =2r  and a continuous transformation 

){z 
z 2  = ( 2 8 )  

does not exist. 

By complete induction it is shown that {){1, ){2} is a complete module basis. 

To determine the common zeros of  ){1, ){2, the following algebraic system of equa- 
tions has to be investigated: 

)(1 = 21 -- 22+ 23 -- 24, = 0 (29) 

){2 = 2123 -- 2z24 = 0 (30) 

The resultant R(){1, Z2) of ){1, ){z with respect to the parameter 21 vanishes on the 
algebraic set of;(  1, ){z [12]. One obtains: 

R21(){1' Z2)= }i 3 --22+23--24 . __2224 =(22 --23)(23 --24)=0 (31) 

From ){1 = 0  one gets: 

22--23 =0 ) 21--24=0 (32) 

resp. 2 3 - 2 4 = 0  , 2 1 - 2 2 = 0  (33) 

Thus, the algebraic set of {)h, ){2 } consists of  the achiral zeros (achiral points) of the 
parameter space. 
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An arbitrary chirality function 

F =  T1ZI + TzZ 2 (34) 

necessarily possesses chiral zeros which are in no way predetermined by the alge- 
braic set of the module basis {)h, Z2} but which depend on the properties of the 
totally symmetric functions T1, T 2 . 

If  one sets about interpreting the measurements of a chirality observation F with 
the aid of  an "ansatz" in a suitable polynomial in 4, then, obviously, such an ansatz 
must comprise all elements of the module basis of S (resp. So), so that no chiral 
zero of the chiral property under investigation is predetermined. For molecular 
classes of category (a) an approximation 

F -~ PZ1 (35) 

with a constant p might be suitable (comp. [5-7]). (35) implies an open neighbour- 
hood about a reference point (centre of expansion) in parameter space in which no 
chiral zeros of F are to be found. 

For molecular classes of category (b) no continuous chirality function exists with- 
out chiral zeros. The achiral zeros are imbedded in the set of chiral zeros for any 
continuous chirality function F so that chiral zeros of Fexist in any neighbourhood 
of an achiral zero in parameter space. Obviously, an ansatz in the "chirality poly- 
nomial" alone, i.e. in the basis element of the lowest degree (approximation of the 
first kind in [1, 2]), suffices only in the case ofchirality functions Fhaving the same 
set of chiral zeros as the chirality polynomial in a neighbourhood of an achiral zero. 
The simplest general ansatz for molecular classes of category (b) obtains as : 

F~-pl)~I + "'" + Pm)~m, (m> 1) (36) 

with constants Pl, �9 �9 P,, to be determined from experiment. 

The following theorem proves to be useful (comp. [1]): 

Theorem." A rational integral function 9 (21 , . . . ,  4,) depends exclusively on the 
differences (2 i -2 j )  of the independent variables 41 . . . . .  2., if and only if the 
following holds : 

i ~ ( 9 ( 2 1 ' ' ' " 2 " ) ) = 0  (37) 

Proof" Consider the transformation ~ --+ ~ with 

~1=41, ~2--=22-21, . . . ,  ~n=2n--21 (38) 

then for i, j ~  1 : 

2 i -  2j = ~i-  ~j 

The inverse transformation obtains as: 

2 1 = G ,  2 2 = G + ~ 1  . . . .  , 2 , = ~ , + G  

(39) 

(40) 
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1) If a rational integral function g (41 . . . . .  4.) depends solely on differences of the 
variables, then one gets: 

(41) g(21 . . . .  , 2 , ) = 0 ( ~ 2 , . . . ,  ~,) 

thus 

2 
1, .  (~ 

2) If a rational integral function g(21, �9 �9 2,) has the property 

. . . . .  

then 

1,n 

o= Z . . . .  ,4.)= g(21,.. 4.) 
�9 " " i "' ~ 1  

g ( 2 1 , ' '  ", ) ~ . ) = 0 ( ~ z  . . . .  , ~ . )  

The operator 

(42) 

(43) 

,~,"0 (44) 

is totally symmetric under any permutation of the 21 . . . . .  2,. Thus, if f(21 . . . . .  2,) 
is a chirality function with respect to some permutation group S of the variables, 
then 

1,n 

~ f (2  t . . . . .  2,) (45) 

is a chirality function with respect to that group, too. Iffis a chirality polynomial of 
lowest degree, then obviously: 

1,n (~ 

~ f ( 2 1 , . . . ,  2 , )=0  (46) 

For molecular classes of category (b) only the basis element of lowest degree, 
therefore, depends of necessity solely on differences of the variables 2 , , . . . ,  2.. As 
a consequence, an "ansatz" which comprises only the chirality polynomial of 
lowest degree is distinguished in that one is able to choose an arbitrary origin on 
the 2-scale on account of the translational invariance of that polynomial. 

3.  C h i r a l i t y  F u n c t i o n s  in  S e v e r a l  L i g a n d  P a r a m e t e r s  

Let 2, # be two independent ligand parameters. Then, a chirality function 

F(~,,/~) =F(21 . . . .  ,2 , ,  /~,,.. ,/~,) (47) 
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constitutes a relative simultaneous invariant of  grade 2 with the factor system 
{+ 1, -1}[8]. In the set of  the rational integral simultaneous invariants of  any 
factor system there again exists a finite module basis {qh,. �9 ~~ such that any 
analytic chirality function F(L  #) obtains as a linear combination in the basis 
elements : 

F =  T 1 o,9 l .-k . . . -.k Zrn (Pm (48) 

The functions T~ . . . . .  T m represent analytic absolute simultaneous invariants of  
grade 2 in the two ligand parameters 2, p. 

For  simultaneous invariants of  any grade higher than 1 the module basis contains 
at least two elements q):, q~2- Thus, any analytic function in two or more indepen- 
dent ligand parameters necessarily possesses chiral zeros in the 2n-dimensional (or 
higher dimensional) parameter space. 

Let {ZI, �9 .-,  Zr} be a module basis of  the chirality functions of  grade 1 in a single 
ligand parameter 2 (or any subset of  such a basis). To construct some basis ele- 
ments of  the chirality functions of  grade 2 in the ligand parameters 2,/~ the follow- 
ing totally symmetric operators (of grade 2) can be applied to the basis functions 

Z1, �9 �9 Zr: 

B : =  ~ #'~-~i (49) 

1, n ~2 

1,n ~2 

Bll  = ~.. Pi#) 3,~ir (51) 
t~J 

etc. 

As the operators B 1, B 2, B 1~ are totally symmetric with respect to any simultaneous 
permutation of  the two rows of parameters ( i t1 , . . . ,  2,) and (#1,. �9 2,), the appli- 
cation of  these operators to any rational integral chirality function )~ in 2 results in 
simultaneous chirality functions in 2 and p (if a nontrivial result is obtained). The 
new chirality functions are polynomials in 2 and # of  a degree not higher than that 
of  the polynomial Z in 2. 

In the individual case it has to be shown (e.g. by complete induction) whether the 
set of  functions obtained by this procedure constitutes a module basis of  the 
chirality functions in the two parameters )~,/z. 

Let ;/~ = Z 1(21, - �9 2,) be the element of  the module basis of the chirality functions 
of grade 1 which is of  lowest degree in 2. Then any element ~0~ of the module basis 
of the chirality functions of  grade 2 which is derived from )~: by the application 
of  one of  the B-operators (49), (50) is linear in p : , . . . , / z , .  Thus, qh has the property 
(37): 

V 
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This is because )~1 is the chirality polynomial of lowest degree in one variable. 0~, 
then, is dependent on differences in the parameters ]/1,- -.,  ]/,, only. 

Example: Symmetry group C3~. 

The frame defines a molecular class of category a, the 
module basis of the chirality functions of grade 1 contains 
one element )~ only: Fig. 3. 

z ( z )  = (21 - 2 ~  )(22 - 23 )(23 - 21)  
2 2 2 22232 2 2 2122--2122 --2223+ = -- 2123 + 2123 (53) 

The module basis of the chirality functions of grade 2 (ligand parameters 2, #) con- 
tains, obviously, the elements X(Jt) and ~((/*). From the application of the operators 
B1, B2, B11 obtains: 

B l z O 0 = ~ l ( 2  2 2 2 2 ~ 2 - 2 3 ) +  ~ 2 ( 2 3 - 2 1 ) +  ~ 3 ( 2 1 - 2 2 )  

+ 2#121(23 - 22)-[- 2pz2a(21-23)+ 2#323(22 -21)  (54) 

B 2 Z(,~) = 2(21 ]/2 - 22/[/1 -[- 22 ]/3 - 23 ]/2 "~ 23 ]/1 - 21 ]/,/3 ) (55) 

B11Z(~) m- 4(]/1 ]/3 21 -- ]/1]/2 21-[- ]/1 ]/2 22 --  ]/2 ]/3 22] -  ]/z ]/3 23 --  ]/1 ]/323 ) 
.q_2(f12(23_22)+ 2 q_ 2 ]/2(21--23) ]/3(22--21)) (56) 

From this obtains the module basis {00, 01 . . . .  ,0~  } for analytic chirality func- 
tions of grade 2 in the ligand parameters 2, ]/, which can be shown to be complete 
by complete induction: 

0 0 ( ~ ,  /*)=21],/2 --  ~)~2 ]/1-[- 22]/3 --  23 ]/2AV 23]/1 --21]/,/3 (57) 

01(•  ' / * ) = 2 2 ] / 1 _ _ 2 2 ] / 2 +  2 2 2 2 (58) 21]/3 - -23] /1  + 23]/2 - -22] /3  

02(L/*)---21]/2 2 2_21]/2 +22 2 2 (59) - -  22]/1 nt- 23 ] /1 ] /3 - -  2 3  ] /2  

0 3 ( ~  ' .1[/)=]/1]/22 2 2 2 --  ]/1 ]/2 @" ]/2 ]/3 --  ]/2 ]/3 -[~ ]/1]/3 --  ]/1]/2 (60) 

04(2 ,/*)_=212~_2~22+ 2222_ 2z23+ 2 ~ 2 3 _ 2 1 2 3 z  2 2 (61) 

In the 6-dimensional (s space one again classifies the zeros of a 
chirality function of grade 2 as to whether they represent chiral or achiral molecules. 

In the following, the algebraic set of the basis elements {Po, O1 . . . . .  q~4} in the 
6-dimensional parameter space is investigated using Kronecker's method of 
elimination (comp. [13]). Let u 1 . . . .  , u 4 be some parameters, then one can con- 
struct the resultant 

Rz,(~Po, H)  (62) 
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of  the polynomials  Cpo and H =  ul cp 1 + �9 �9 "+  u4 ~~ with respect to the parameter  2 i. 
The  condi t ion  

Rx,(q~o, H )  = 0 (63) 

furnishes a polynomia l  in u l , . . . ,  u4 which vanishes identically in ul . . . .  , u4 on 
the algebraic set of  the basis elements q~o, cPl . . . .  ', q~4- The sole precondi t ion to be 
met  is that  ~o o and H are regular  polynomials  in 21 . This implies : 

#2 # #3 (64) 

The vanishing o f  the resultant  (63) furnishes the following system of  4 equat ions:  

ul :  ( m -  ,h( l - 

~- (]'/2 --/13 )2(]21 (222 - -  ~2 ) At- 22 ~/2 - -  )~22 #3 ) = 0 (65)  

u2: -m)(22(m-]21)+ 
+(]22-]23)2(]22(23-22)+22]232-23]22)=0 (66) 

u3 : (]22 - ]23)3(]21 - ]22 )(]23 - ]21) = 0 (67) 

u4 : (23_22)(2z(]23_pO+23(]21_]22))2+ 2 2 (23 - -  22 )(]22 - -  ]23 ) 

X (22(#3 - -  ]21)"~ 23 (]21 - -  ~2 )) "~- (]22 - -  ]23 )22223(23 - -  22 ) = 0 (68) 

F r o m  (67) one gets on account  o f  (64): 

]21=]22 o r  ]21=]23 (69) 

F o r  

#1 ~- ]22 ~ ]23 (70) 

(65), (66) and (68) hold. To  determine 21, one gets f rom 

CPo=O (71) 

on account  o f  (70) : 

(21 - -  22 )(]21 - -  ]'/3 ) = 0 (72) 

Because o f  ]21 # ]23 the c o m m o n  zeros 

(~1 = ]225~ ]23, 2 1 = 2 2 )  (73) 

o f  the module  basis obtain.  Alternatively,  for  

]21 ---~ #3 • ~2 (74) 

(65), (66), (68) hold and f rom (71) one gets because of]21 # ]22: 

(]21=]23#]22, 2 1 = 2 3 )  (75) 

I f  Kronecker ' s  me thod  o f  el imination is applied to 22 or 23 the points defined by 

(]22 = ~3 ~;~ ]21 , ~ 2 = 2 3 )  (76) 
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of  the algebraic set of  {q~o, q~l, �9 �9  ~~ } obtain. Finally,  under the condi t ion  

/q = #2 = #3 (77) 

one obtains:  cp o = O, cp 1 = O, cp 2 = O, cp a = O. Using (61), one then arrives at : 

(/A1~---~2=1~3,,~1~---.~ 2 or  2 1 = 2 3  or ~2=,~3)  (78) 

Thus,  in consequence  of  (73), (75), (76) and (78) the algebraic set of  {q)o, ~~ �9 - . ,  
cp4 } contains  exactly the set of  achiral points  of  the (2, p)-parameter space. 

By the same kind of  analysis one can show that already the algebraic set of  the 
subset 

{~~ q ) 3 , 0 4 }  (79) 

of  the module  basis {Cpo, ~01 . . . .  , ~04 } spans exactly the set of  achiral points  in the 
parameter space. In consequence,  there are relations of  the kind (18) between ,co 1 
resp. ~o 2 and the subset (79). Therefore, the elements o f  the module  basis are 
linearly dependent  and syzygies between them (comp. (22)) exist, if nontrivial  
relations o f  the kind (22) exist. 
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